Szerkesztő:Gubbubu/Miscmatek
Kombinatorika
[szerkesztés]A kombinatorika a matematika egyik tudományága. Röviden úgy foglalhatjuk össze, mint a véges halmazok tartalmazkodási és számossági viszonyainak vizsgálatát; noha e meghatározás nem egészen pontos (a kombinatorika számára a végtelen halmazok is érdekese).
A kombinatorika, dacára annak, hogy a matematika látszólag legegyszerűbb struktúráit, a véges struktúrákat vizsgálja, mint tudományág, nagyon fiatal. Első komolyabb eredményei (a kombinációk vizsgálata) a valószínűségszámítással kapcsolatban már a tizenhetedik században megszülettek, de aztán csak a tizenkilencedik-huszadik században történt jelentősebb előrelépés.
E munkában elég elemi, általános iskolás szintről kiindulva kezdünk a tárgyalásába (noha a tárgyalásmódban, elsősorban a felépítés részletességében, precizitásában e szintet már a kezdet kezdetén jóval meghaladjuk).
Tartalom
[szerkesztés]Elemi kombinbatorika
[szerkesztés]- Sorbarendezések
- Permutációk, variációk
- Kombinációk
- Ismétléses kombináció
- Fák
- Gráfok
- Halmazrendszerek alapjai
Hivatkozások
[szerkesztés]Irodalom
[szerkesztés]- Vilenkin: Kombinatorika
- Lovász-satöbbi: Kombinatorika
- Lovász: Kombinatorika Példatár
- meg ilyesmik
Hivatkozások
[szerkesztés]Sorrend
[szerkesztés]Bevezető feladatok
[szerkesztés]Feladat: Kockafej Úr diplomatatáskája számzáras. A zár négy forgatható tárcsából áll, minden tárcsa egymástól függetlenül tízféle helyzetbe forgatható (0,1,2,3,4,5,6,7,8,9). A táska nyitása csak akkor lehetséges, ha a tárcsákat egy megfelelő, a táskéára jellemző helyzetbe forgatják (pl. az első tárcsa 4-es jegye a második 5-öse, a harmadik 6-osa és a negyedik 0-a mellé kerüljön; azaz a kód mondjuk 4560). Kockafej Úr elfelejtette a kódot.
- A) Hányféle kódot kell kipróbálnia, ha biztosan ki akarja nyitni a táskát?
- B) Hányadrészére csökken a szükséges próbálkozások száma, ha az utolsó sz ámjegyre emlékszik (mondjuk 0).
- C) Hányadrászére csökken a próbálkozások száma, ha minden tárcsán csak négy jegy van (0,1,2,3)?
- (Mekkora az esélye, hogy a k-adik próbálkozásra nyíljon?)
Megj. A)B) 10-edrendű 4 ill 3 osztályú variációk. C negyedrendű permutációk.
Bonyolultabb feladat: lottó- és totószelvény.