Definíció – Hatványsor – Legyen (an) komplex számsorozat és z0 ∈ C. Ekkor az ∑(an(idC-z0)n) függvénysort hatványsornak nevezzük és összegét, az
hozzárendelési utasítással értelmezett, a {z ∈ | ∑(an(z-z0)n) konvergál } halmazon értelmezett függvényt a hatványsor összegének nevezzük. Középpontja z0, együttható-sorozata (an).
|
A továbbiakban csak a ∑(anzn) alakú, azaz a 0 körüli hatványsorokkal foglalkozunk (ezzel nem csorbítjuk az általánosságot, mert eltolással megkaphatjuk a többit is).
Tétel – Cauchy–Hadamard-tétel – Ha (an) komplex számsorozat, és
akkor ∑(anzn) abszolút konvergens a BR(0) gömbön és divergens a B1/R(∞) gömbön.
|
A tétel minden részletre kiterjedő bizonyítását nem végezzük el, csak utalunk rá, hogy nyilvánvaló, hogy a Cauchy-féle gyökkritériumot kell benne használni. A tételbeli R sugarat a hatványsor konvergenciasugarának nevezzük. R-et másként is kiszámíthajuk. Ha azt tudjuk, a hányadoskritérium alapján, hogy
akkor létezik és ezzel egyenlő az n-edik gyökök sorozata is:
ahol az idézőjel azt jelzi, hogy a konvergenciasugár lehet végtelen vagy 0 is.
1. Feladat. Mi az alábbi hatványsorok konvergenciaköre és -sugara?
(Útmutatás: hivatkozzunk a "korlátos szor nullához tartó" kritériumra.)
Megoldás
Analitikusnak nevezünk egy f komplex függvényt, a z0 pontban, ha van olyan δ sugarú környezet és ∑(an(z-z0)n) hatványsor, hogy minden z ∈ Bδ(z0)-ra f értelmezett, ∑(an(z-z0)n) konvergens és
Ezt úgy jelöljük, hogy f ∈ Cω(z0).
Hatványsorok összegfüggvényének folytonossága és differenciálhatósága
[szerkesztés]
Tétel – Ha (an) komplex számsorozat, akkor az ∑(anzn) hatványsor összegfüggvénye folytonos a konvergenciakör belsejében. Sőt, reguláris is ott.
|
Emlékeztetünk arra, hogy egy függvény reguláris egy pontban, ha a pont egy környezetében mindenütt értelmezett és komplex deriválható. A tétel szerint tehát analitikus függvény reguláris. A döbbenetes azonban, hogymint később kiderül: reguláris függvény analitikus: f ∈ Cω(z0) akkor és csak akkor, ha f ∈ Reg(z0).
Bizonyítás. Legyen z a konvergenciakör egy belső pontja és Δz olyan, hogy még z + Δz is a konvergenciakör belsejébe esik. Ekkor:
mert mindkét sor konvergens, ekkor algebrai azonosságokkal:
vagy ha tetszik nemnulla Δz-vel:
a jobb oldalon álló sor konvergenciáját a gyökkritériummal láthatjuk be:
ahol r olyan pozitív szám, hogy | z + Δz | < r < R (ez utóbbi a hatványsor konvergenciasugara). És
Így azt kaptuk, hogy minden olyan Δz-re, melyre | z + Δz | < r, teljesül és |Δz| <ε/(1+∑n|an|nrn):=δ
Hosszadalmasabb számolásokkal, de lényegében ugyanígy kimutatható, hogy a hatványsor összegfüggvénye komplex differenciálható is a konvergenciakör belsejében és deriváltja a formális tagonkénti deriválással kapott sor összegfüggvényével egyenlő, tehát: